Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745447

RESUMEN

Hydroxyprolines are abundant in nature and widely utilized by many living organisms. Isomerization of trans-4-hydroxy-d-proline (t4D-HP) to generate 2-amino-4-ketopentanoate has been found to need a glycyl radical enzyme HplG, which catalyzes the cleavage of the C-N bond, while dehydration of trans-4-hydroxy-l-proline involves a homologous enzyme of HplG. Herein, molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations are employed to understand the reaction mechanism of HplG. Two possible reaction pathways of HplG have been explored to decipher the origin of its chemoselectivity. The QM/MM calculations reveal that the isomerization proceeds via an initial hydrogen shift from the Cγ site of t4D-HP to a catalytic cysteine radical, followed by cleavage of the Cδ-N bond in t4D-HP to form a radical intermediate that captures a hydrogen atom from the cysteine. Activation of the Cδ-H bond in t4D-HP to bring about dehydration of t4D-HP possesses an extremely high energy barrier, thus rendering the dehydration pathway implausible in HplG. On the basis of the current calculations, conserved residue Glu429 plays a pivotal role in the isomerization pathway: the hydrogen bonding between it and t4D-HP weakens the hydroxyalkyl Cγ-Hγ bond, and it acts as a proton acceptor to trigger the cleavage of the C-N bond in t4D-HP. Our current QM/MM calculations rationalize the origin of the experimentally observed chemoselectivity of HplG and propose an H-bond-assisted bond activation strategy in radical-containing enzymes. These findings have general implications on radical-mediated enzymatic catalysis and expand our understanding of how nature wisely and selectively activates the C-H bond to modulate catalytic selectivity.

2.
ChemSusChem ; : e202400123, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664234

RESUMEN

Water oxidation is a crucial reaction in the artificial photosynthesis system. In the present work, density functional calculations were employed to decipher the mechanism of water oxidation catalyzed by a binuclear cobalt complex, which was disclosed to be a homogeneous water oxidation catalyst in pH=7 phosphate buffer. The calculations showed that the catalytic cycle starts from the CoIII,III-OH2 species. Then, a proton-coupled electron transfer followed by a one-electron transfer process leads to the generation of the formal CoIV,IV-OH intermediate. The subsequent PCET produces the active species, namely the formal CoIV,V=O intermediate (4). The oxidation processes mainly occur on the ligand moiety, including the coordinated water moiety, implying a redox non-innocent behavior. Two cobalt centers keep their oxidation states and provide one catalytic center for water activation during the oxidation process. 4 triggers the O-O bond formation via the water nucleophilic attack pathway, in which the phosphate buffer ion functions as the proton acceptor. The O-O bond formation is the rate-limiting step with a calculated total barrier of 17.7 kcal/mol. The last electron oxidation process coupled with an intramolecular electron transfer results in the generation of O2.

3.
J Am Chem Soc ; 146(17): 11801-11810, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626455

RESUMEN

The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.

4.
Inorg Chem ; 63(13): 6082-6091, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38512050

RESUMEN

Heteronuclear Fe(µ-H)Zn hydride Cp*Fe(1,2-Cy2PC6H4)HZnEt (3) undergoes reversible intramolecular Caryl-H reductive elimination through coupling of the cyclometalated phosphinoaryl ligand and the hydride, giving rise to a formal Fe(0)-Zn(II) species. Addition of CO intercepts this equilibrium, affording Cp*(Cy2PPh)(CO)Fe-ZnEt that features a dative Fe-Zn bond. Significantly, this system achieves bimetallic H2 addition, as demonstrated by the transformation of the monohydride Fe(µ-H)Zn to a deuterated dihydride Fe-(µ-D)2-Zn upon reaction with D2.

5.
Nat Commun ; 15(1): 1431, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365864

RESUMEN

Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò-Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.5% region with reference to structures from DrugBank database. Mechanistic studies elucidated the origin of the observed regio- and stereoselectivities, which arise from distortion-controlled C-N coupling scenarios. This study expands the synthetic repertoire of energy transfer catalysis for accessing structurally intriguing architectures with high molecular complexity and underexplored topological chemical space.

6.
Angew Chem Int Ed Engl ; 63(9): e202317514, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38179807

RESUMEN

In this study, we highlight the impact of catalyst geometry on the formation of O-O bonds in Cu2 and Fe2 catalysts. A series of Cu2 complexes with diverse linkers are designed as electrocatalysts for water oxidation. Interestingly, the catalytic performance of these Cu2 complexes is enhanced as their molecular skeletons become more rigid, which contrasts with the behavior observed in our previous investigation with Fe2 analogs. Moreover, mechanistic studies reveal that the reactivity of the bridging O atom results in distinct pathways for O-O bond formation in Cu2 and Fe2 catalysts. In Cu2 systems, the coupling takes place between a terminal CuIII -OH and a bridging µ-O⋅ radical. Whereas in Fe2 systems, it involves the coupling of two terminal Fe-oxo entities. Furthermore, an in-depth structure-activity analysis uncovers the spatial geometric prerequisites for the coupling of the terminal OH with the bridging µ-O⋅ radical, ultimately leading to the O-O bond formation. Overall, this study emphasizes the critical role of precisely adjusting the spatial geometry of catalysts to align with the O-O bonding pathway.

7.
Org Lett ; 26(5): 1116-1121, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38295357

RESUMEN

Diels-Alder cycloaddition of anthracene with olefin is achieved in a homogeneous solution via energy transfer under visible light. A series of substrates including electroneutral styrene derivatives can be successfully converted into the corresponding cycloadducts in a head-to-head orientation with high to excellent yields. The high ortho-regioselectivity, mild condition, and broad substrate scope enable promising advances in organic transformation.

8.
Dalton Trans ; 53(2): 684-698, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38078488

RESUMEN

The tetradentate PNNP-type IrIII complex Mes-IrPCY2 ([Cl-IrIII-H]+) is reported to be an efficient catalyst for the reduction of CO2 to formate with excellent selectivity under visible light irradiation. Density functional calculations have been carried out to elucidate the mechanism and the origin of selectivity in the present work. Calculations suggest that the double-reduced complex 1-H (1[IrI-H]0) demonstrates higher activity than the single-reduced complex 2-H (2[IrIII(L˙-)-H]+), possibly owing to the higher hydride donor ability of the former compared to the latter; thus 1-H functions as the active species in the overall CO2 reduction reaction. In the HCOO- formation pathway, the hydride of 1-H performs a nucleophilic attack on CO2via an outer-sphere fashion to generate species 1-OCHO (1[IrI-OCHO]0), which then releases HCOO- to produce an IrI intermediate. A subsequent protonation and chloride coordination of the Ir center leads to the regeneration of catalyst 1[Cl-IrIII-H]+. For the CO production, a nucleophilic attack on CO2 takes place by the Ir atom of 1-Hvia an inner-sphere manner to afford complex O2C-3-H (1[O2C-IrIII-H]0), followed by a two-proton-one-electron reduction to furnish the OC-2-H complex (2[OC-IrIII(L˙-)-H]+) after liberating a H2O. Ultimately, CO is released to form 2-H. The stronger nucleophilicity as well as smaller steric hindrance of the hydride than the Ir atom of the active species 1-H (1[IrI-H]0) is found to account for the favoring of formate formation over CO formation. Meanwhile, the CO2 reduction reaction is calculated to be preferred over the hydrogen evolution reaction, and this is consistent with the experimental product distributions.

9.
J Org Chem ; 89(1): 321-329, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38086000

RESUMEN

An unprecedented dearomatization of [2.2]paracyclophane-derived cyclic N-sulfonylimines was conducted through cyclopropanation with sulfur ylides, giving a series of dearomative cyclopropanes with good yields. DFT calculations suggested that the dearomatization was attributed to the relatively weak aromaticity of [2.2]paracyclophane derivatives that resulted from the effect of the unique [2.2]paracyclophane skeleton and the electron-withdrawing N-sulfonyl group. Some downstream elaborations of the products were demonstrated.

10.
J Am Chem Soc ; 145(49): 26915-26924, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38019775

RESUMEN

Exploring bidirectional CO2/HCO2- catalysis holds significant potential in constructing integrated (photo)electrochemical formate fuel cells for energy storage and applications. Herein, we report selective CO2/HCO2- electrochemical interconversion by exploiting the flexible coordination modes and rich redox properties of a versatile iron-thiolate platform, Cp*Fe(II)L (L = 1,2-Ph2PC6H4S-). Upon oxidation, this iron complex undergoes formate binding to generate a diferric formate complex, [(L-)2Fe(III)(µ-HCO2)Fe(III)]+, which exhibits remarkable electrocatalytic performance for the HCO2--to-CO2 transformation with a maximum turnover frequency (TOFmax) ∼103 s-1 and a Faraday efficiency (FE) ∼92(±4)%. Conversely, this iron system also allows for reduction at -1.85 V (vs Fc+/0) and exhibits an impressive FE ∼93 (±3)% for the CO2-to-HCO2- conversion. Mechanism studies revealed that the HCO2--to-CO2 electrocatalysis passes through dicationic [(L2)-•Fe(III)(µ-HCO2)Fe(III)]2+ generated by unconventional oxidation of the diferric formate species taking place at ligand L, while the CO2-to-HCO2- reduction involves a critical intermediate of [Fe(II)-H]- that was independently synthesized and structurally characterized.

11.
Inorg Chem ; 62(24): 9400-9417, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37279181

RESUMEN

Iron tetraphenylporphyrin complex modified with four trimethylammonium groups (Fe-p-TMA) is found to be capable of catalyzing the eight-electron eight-proton reduction of CO2 to CH4 photochemically in acetonitrile. In the present work, density functional theory (DFT) calculations have been performed to investigate the reaction mechanism and to rationalize the product selectivity. Our results revealed that the initial catalyst Fe-p-TMA ([Cl-Fe(III)-LR4]4+, where L = tetraphenylporphyrin ligand with a total charge of -2, and R4 = four trimethylammonium groups with a total charge of +4) undergoes three reduction steps, accompanied by the dissociation of the chloride ion to form [Fe(II)-L••2-R4]2+. [Fe(II)-L••2-R4]2+, bearing a Fe(II) center ferromagnetically coupled with a tetraphenylporphyrin diradical, performs a nucleophilic attack on CO2 to produce the 1η-CO2 adduct [CO2•--Fe(II)-L•-R4]2+. Two intermolecular proton transfer steps then take place at the CO2 moiety of [CO2•--Fe(II)-L•-R4]2+, resulting in the cleavage of the C-O bond and the formation of the critical intermediate [Fe(II)-CO]4+ after releasing a water molecule. Subsequently, [Fe(II)-CO]4+ accepts three electrons and one proton to generate [CHO-Fe(II)-L•-R4]2+, which finally undergoes a successive four-electron-five-proton reduction to produce methane without forming formaldehyde, methanol, or formate. Notably, the redox non-innocent tetraphenylporphyrin ligand was found to play an important role in CO2 reduction since it could accept and transfer electron(s) during catalysis, thus keeping the ferrous ion at a relatively high oxidation state. Hydrogen evolution reaction via the formation of Fe-hydride ([Fe(II)-H]3+) turns out to endure a higher total barrier than the CO2 reduction reaction, therefore providing a reasonable explanation for the origin of the product selectivity.

12.
Nat Commun ; 14(1): 1883, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019932

RESUMEN

In canonical organic chemistry textbooks, the widely adopted mechanism for the classic transetherifications between ethers and alcohols starts with the activation of the ether in order to weaken the C-O bond, followed by the nucleophilic attack by the alcohol hydroxy group, resulting in a net C-O/O-H σ-bond metathesis. In this manuscript, our experimental and computational investigation of a Re2O7 mediated ring-closing transetherification challenges the fundamental tenets of the traditional transetherification mechanism. Instead of ether activation, the alternative activation of the hydroxy group followed by nucleophilic attack of ether is realized by commercially available Re2O7 through the formation of perrhenate ester intermediate in hexafluoroisopropanol (HFIP), which results in an unusual C-O/C-O σ-bond metathesis. Due to the preference for the activation of alcohol rather than ether, this intramolecular transetherification reaction is therefore suitable for substrates bearing multiple ether moieties, unparalleled by any previous methods.

13.
Inorg Chem ; 62(10): 4066-4075, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36857027

RESUMEN

The cytochrome bd oxygen reductase catalyzes the four-electron reduction of dioxygen to two water molecules. The structure of this enzyme reveals three heme molecules in the active site, which differs from that of heme-copper cytochrome c oxidase. The quantum chemical cluster approach was used to uncover the reaction mechanism of this intriguing metalloenzyme. The calculations suggested that a proton-coupled electron transfer reduction occurs first to generate a ferrous heme b595. This is followed by the dioxygen binding at the heme d center coupled with an outer-sphere electron transfer from the ferrous heme b595 to the dioxygen moiety, affording a ferric ion superoxide intermediate. A second proton-coupled electron transfer produces a heme d ferric hydroperoxide, which undergoes efficient O-O bond cleavage facilitated by an outer-sphere electron transfer from the ferrous heme b595 to the O-O σ* orbital and an inner-sphere proton transfer from the heme d hydroxyl group to the leaving hydroxide. The synergistic benefits of the two types of hemes rationalize the highly efficient oxygen reduction repertoire for the multi-heme-dependent cytochrome bd oxygen reductase family.


Asunto(s)
Proteínas de Escherichia coli , Oxidorreductasas , Oxidorreductasas/química , Oxígeno/química , Protones , Electrones , Grupo Citocromo b/metabolismo , Proteínas de Escherichia coli/química , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Citocromos/química , Oxidación-Reducción , Hemo/química , Hierro
14.
Angew Chem Int Ed Engl ; 62(16): e202219034, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36789864

RESUMEN

Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.


Asunto(s)
Cobre , Oxidorreductasas , Cobre/metabolismo , Estereoisomerismo , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Ceruloplasmina/metabolismo , Indoles
15.
ChemistryOpen ; 12(2): e202200254, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36744721

RESUMEN

Density functional theory (DFT) calculations were conducted to investigate the cobalt porphyrin-catalyzed electro-reduction of CO2 to CO in an aqueous solution. The results suggest that CoII -porphyrin (CoII -L) undertakes a ligand-based reduction to generate the active species CoII -L⋅- , where the CoII center antiferromagnetically interacts with the ligand radical anion. CoII -L⋅- then performs a nucleophilic attack on CO2 , followed by protonation and a reduction to give CoII -L-COOH. An intermolecular proton transfer leads to the heterolytic cleavage of the C-O bond, producing intermediate CoII -L-CO. Subsequently, CO is released from CoII -L-CO, and CoII -L is regenerated to catalyze the next cycle. The rate-determining step of this CO2 RR is the nucleophilic attack on CO2 by CoII -L⋅- , with a total barrier of 20.7 kcal mol-1 . The competing hydrogen evolution reaction is associated with a higher total barrier. A computational investigation regarding the substituent effects of the catalyst indicates that the CoPor-R3 complex is likely to display the highest activity and selectivity as a molecular catalyst.

16.
Chem Asian J ; 18(7): e202201259, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36747257

RESUMEN

Density functional theory calculations have been utilized to investigate the synergistic effect of palladium(0) and copper(I) catalyzed selective formation of allylated indole from (2-alkynyl)-phenylisocyanate and allyl methyl carbonate. The main competing reaction yielding the N-allyl carbamate was also considered. Calculated results indicate that using the Pd(0)-complex alone, the generation of indole is kinetically much less favored than producing the N-allyl carbamate compound. However, the co-addition of Cu(I) catalyst can considerably decrease the barrier for the intramolecular cyclization step, leading to the formation of the indole product. Analysis of the cyclization process suggests that Cu(I) complex can act as a Lewis acid to activate the linear alkyne group via a π-coordination manner prior to the formation of a 5-membered ring transition state toward indole formation. Altogether, the mechanistic insights revealed in the present study aim at a better understanding of the mechanism and the factors governing the selectivity in synergistic Pd/Cu catalysis.

17.
Chemistry ; 29(7): e202202995, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321632

RESUMEN

TokK is a B12 -dependent radical SAM enzyme involved in the biosynthesis of the ß-lactam antibiotic asparenomycin A. It can catalyze three methylations on different sp3 -hybridized carbon positions to introduce an isopropyl side chain at the ß-lactam ring of pantetheinylated carbapenem. Herein, we report a quantum chemical study of the reaction mechanism of TokK. A stepwise ''push-pull'' radical relay mechanism is proposed for each methylation: a 5'-deoxyadenosine radical first abstracts a hydrogen atom from the substrate in the active site, then methylcobalamin directionally donates a methyl group to the substrate. More importantly, calculations were able to uncover the origin of observed chemoselectivity and stereoselectivity for the first methylation and regioselectivity for the following two methylations. Further detailed distortion/interaction analysis can help to unravel the main factors controlling the selectivities. Our findings of sequential methylations by TokK could have profound implications for studying other B12 -dependent radical SAM enzymes.


Asunto(s)
Metiltransferasas , beta-Lactamas , Metilación , Metiltransferasas/metabolismo , Catálisis , Modelos Teóricos , S-Adenosilmetionina/química , Vitamina B 12/química
19.
Inorg Chem ; 61(42): 16549-16564, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36216788

RESUMEN

Density functional theory (DFT) calculations have been conducted to investigate the mechanism of cobalt(II) tetraamino phthalocyanine (CoPc-NH2) catalyzed electro-reduction of CO2. Computational results show that the catalytically active species 1 (4[CoII(H4L)]0) is formed by a four-electron-four-proton reduction of the initial catalyst CoPc-NH2. Complex 1 can attack CO2 after a one-electron reduction to give a [CoIII-CO22-]- intermediate, followed by a protonation and a one-electron reduction to give intermediate [CoII-COOH]- (4). Complex 4 is then protonated on its hydroxyl group by a carbonic acid to generate the critical species 6 (CoIII-L•--CO), which can release the carbon monoxide as an intermediate (and also as a product). In parallel, complex 6 can go through a successive four-electron-four-proton reduction to produce the targeted product methanol without forming formaldehyde as an intermediate product. The high-lying π orbital and the low-lying π* orbital of the phthalocyanine endow the redox noninnocent nature of the ligand, which could be a dianion, a radical monoanion, or a radical trianion during the catalysis. The calculated results for the hydrogen evolution reaction indicate a higher energy barrier than the carbon dioxide reduction. This is consistent with the product distribution in the experiments. Additionally, the amino group on the phthalocyanine ligand was found to have a minor effect on the barriers of critical steps, and this accounts for the experimentally observed similar activity for these two catalysts, namely, CoPc-NH2 and CoPc.

20.
J Am Chem Soc ; 144(37): 17261-17268, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36070360

RESUMEN

Direct CAr-F arylation is effective and sustainable for synthesis of polyfluorobiaryls with different degrees of fluorination, which are important motifs in medical and material chemistry. However, with no aid of transition metals, the engagement of CAr-F bond activation has proved difficult. Herein, an unprecedented transition-metal-free strategy is reported for site-selective CAr-F arylation of polyfluoroarenes with simple (het)arenes. By merging N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide)-catalyzed electrophotocatalytic reduction and anodic nitroxyl radical oxidation in an electrophotocatalytic cell, various polyfluoroaromatics (2F-6F and 8F), especially inactive partially fluorinated aromatics, undergo sacrificial-reagents-free C-F bond arylation with high regioselectivity, and the yields are comparable to those for reported transition-metal catalysis. This atom- and step-economic protocol features a paired electrocatalysis with organic mediators in both cathodic and anodic processes. The broad substrate scope and good functional-group compatibility highlight the merits of this operationally simple strategy. Moreover, the easy gram-scale synthesis and late-stage functionalization collectively advocate for the practical value, which would promote the vigorous development of fluorine chemistry.


Asunto(s)
Perileno , Elementos de Transición , Catálisis , Flúor/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...